How do you graph #y =(8x-4x^2)/((x+2)^2)#?

1 Answer
Apr 19, 2016

see explanantion

Explanation:

#color(blue)("Investigating extremities")#

#color(brown)(y=Lim_(x->+-oo) (8x-4x^2)/((x+2)^2)->color(blue)((-4(+-x)^2)/((+-x)^2) = -4)#

Note that #x^2" " underline("'wins'")# over the other values in this equations

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Investigating "x=0)#

#color(brown)(y= (8x-4x^2)/((x+2)^2)->color(blue)(0/4=0)#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Investigating "y=0)#

#=>8x=4x^2#

#color(blue)(=> x=2)#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)(x_("intercepts") -> (x,y)-> (0,0)" and "(2,0)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)(y_("intercepts")->(x,y)-> (0,0) )#
"'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(brown)("The equation is undefined at "x=-2" (excluded value)")#

Let #deltax# be very small
Let #x-2#

Then we have

#y=(8(-2+deltax) -4(-2+deltax)^2)/([(-2+deltax)+2]^2)#

#y=(-16+8deltax-4(4-4deltax+(deltax)^2))/((deltax)^2)#

#y=(-16+8deltax-16+16deltax-4(deltax)^2)/((deltax)^2)#

#y=-32/((deltax)^2) +24/(deltax)-4#

as #deltax# becomes increasingly small then #|-32/((deltax)^2)| >24/deltax# .

#color(brown)(y=lim_(deltax->0) -32/((deltax)^2) +24/(deltax)-4)color(blue)(-> -oo)#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Tony B