# How do you identify all vertical asymptotes for f(x)=(3x^2+x-5)/(x^2+1)?

Then teach the underlying concepts
Don't copy without citing sources
preview
?

#### Explanation

Explain in detail...

#### Explanation:

I want someone to double check my answer

1
Jan 10, 2017

None. See the graph and explanation.

#### Explanation:

By actual division,

f = 3+(x-8)/(x^2+1)

y = quotient = 3 and

the factors of the denominator (x+i)(x-i) of the remainder = 0 give

the asymptotes.

The graph is asymptote-inclusive.

So, the only real asymptote is the horizontal asymptote y = 3.
graph{(y(x^2+1)-3x^2-x+5)(y-3)=0 [-20, 20, -10, 10]}

Then teach the underlying concepts
Don't copy without citing sources
preview
?

#### Explanation

Explain in detail...

#### Explanation:

I want someone to double check my answer

1
Gió Share
Jan 10, 2017

Your function shouldn't have any vertical asymptote.

#### Explanation:

The vertical asymtote is found at values of $x$ that makes the denominator equal to zero (and so creating a discontinuity) but the denominator of your function will never be zero regardless of the real value of $x$ you may choose.

You can also see this graphically:
graph{(3x^2+x-5)/(x^2+1) [-9.12, 10.88, -13.76, -3.76]}

• 14 minutes ago
• 23 minutes ago
• 24 minutes ago
• 27 minutes ago
• A minute ago
• 3 minutes ago
• 8 minutes ago
• 9 minutes ago
• 10 minutes ago
• 11 minutes ago
• 14 minutes ago
• 23 minutes ago
• 24 minutes ago
• 27 minutes ago