How do you identify the vertices, foci, and direction of #(y-1)^2/9-(x+1)^2/16=1#?

1 Answer
Nov 10, 2016

The vertices are #=(-1,4)# and #=(-1,-2)#
The foci are F#=(-1,6)# and F'#=(-1,-4)#
The equations of the asymptotes are #y=1+3/4(x+1)# and #y=1-3/4(x+1)#

Explanation:

This is the equation of an updown hyperbola.
The standard equation is #(y-k)^2/b^2-(x-h)^2/a^2=1#
The center is #(h,k)=(-1,1)#

The vertices are #(h,k+b)=(-1,4)# and #(h,k-b)=(-1,-2)#

The slopes of the asymptotes are #+-b/a=+-3/4#
The equations of the asymptotes are #y=k+-b/a(x-h)#
#y=1+3/4(x+1)# and #y=1-3/4(x+1)#

To calculate the foci, we need #c=+-sqrt(a^2+b^2)#
So #c=+-sqrt(9+16)=+-sqrt25=+-5#
The foci are #=(h,k+-c)#
so F#=(-1,6)# and F' #(-1,-4)#
graph{((y-1)^2/9-(x+1)^2/16-1)(y-1-3/4(x+1))(y-1+3/4(x+1))=0 [-22.82, 22.77, -11.4, 11.4]}