How do you implicitly differentiate #2=(x+y)^2-y^2-x+e^(3x+y^2) #?

1 Answer
Sep 30, 2017

#dy/dx = (-2x - 2y + 1 - 3e^(3x+y^2))/(2x + 2ye^(3x+y^2)) #

Explanation:

For this, we take derivatives of all terms with respect to #x#. When differentiating a #y# term, we must note the presence of #dy/dx# (often written as #y'# for convenience). After that is done, we solve for #y'#:

#0 = 2(x + y)(1 + 1*y') - 2yy' - 1 + e^(3x+y^2)*(3+2yy') #

#0 = (2x + 2y)(1 + y') - 2yy' - 1 + 3e^(3x+y^2) + 2yy'e^(3x+y^2) #

#0 = 2x + 2xy' + 2y + 2yy' - 2yy' - 1 + 3e^(3x+y^2) + 2yy'e^(3x+y^2) #

#0 = 2x + 2xy' + 2y - 1 + 3e^(3x+y^2) + 2yy'e^(3x+y^2) #

#-2x - 2y + 1 - 3e^(3x+y^2) = 2xy' + 2yy'e^(3x+y^2) #

#-2x - 2y + 1 - 3e^(3x+y^2) = y'(2x + 2ye^(3x+y^2)) #

#(-2x - 2y + 1 - 3e^(3x+y^2))/(2x + 2ye^(3x+y^2)) = y' #