How do you implicitly differentiate #ln(x-y)=x/y #?
2 Answers
Explanation:
#(1-y')x^2=(x-y)(y-xy')
Explanation:
#"differentiate "ln(x-y)" using the "color(blue)"chain rule"#
#"given "y=f(g(x))" then"#
#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#
#rArrd/dx(ln(x-y))#
#=1/(x-y)xxd/dx(x-y)=(1-dy/dx)/(x-y)#
#"differentiate "x/y" using the "color(blue)"quotient rule"#
#"given "f(x)=(g(x))/(h(x))" then"#
#f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larrcolor(blue)"quotient rule"#
#rArrd/dx(x/y)=(y-xdy/dx)/y^2#
#"equating the derivates on both sides"#
#rArr(1-dy/dx)/(x-y)=(y-xdy/dx)/y^2#
#rArry^2-y^2dy/dx=xy-x^2dy/dx-y^2+xydy/dx#
#rArrx^2dy/dx-xydy/dx-y^2dy/dx=xy-y^2-y^2#
#rArrdy/dx(x^2-xy-y^2)=xy-2y^2#
#rArrdy/dx=(xy-2y^2)/(x^2-xy-y^2)#