How do you implicitly differentiate #ln(x-y)=x/y #?

2 Answers
Jan 17, 2018

#y'=(x^2-xy+y^2)/(xy)#

Explanation:

#Ln(x-y)=x/y#

#(1-y')/(x-y)=(1*y-xy')/x^2#

#(1-y')/(x-y)=(y-xy')/x^2#

#(1-y')x^2=(x-y)(y-xy')

#x^2-x^2*y'=xy-x^2*y'-y^2+xyy'#

#x^2-xy+y^2=xy*y'#

#y'=(x^2-xy+y^2)/(xy)#

Jan 17, 2018

#dy/dx=(xy-2y^2)/(x^2-xy-y^2)#

Explanation:

#"differentiate "ln(x-y)" using the "color(blue)"chain rule"#

#"given "y=f(g(x))" then"#

#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#

#rArrd/dx(ln(x-y))#

#=1/(x-y)xxd/dx(x-y)=(1-dy/dx)/(x-y)#

#"differentiate "x/y" using the "color(blue)"quotient rule"#

#"given "f(x)=(g(x))/(h(x))" then"#

#f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larrcolor(blue)"quotient rule"#

#rArrd/dx(x/y)=(y-xdy/dx)/y^2#

#"equating the derivates on both sides"#

#rArr(1-dy/dx)/(x-y)=(y-xdy/dx)/y^2#

#rArry^2-y^2dy/dx=xy-x^2dy/dx-y^2+xydy/dx#

#rArrx^2dy/dx-xydy/dx-y^2dy/dx=xy-y^2-y^2#

#rArrdy/dx(x^2-xy-y^2)=xy-2y^2#

#rArrdy/dx=(xy-2y^2)/(x^2-xy-y^2)#