How do you integral #int [secx(x)tan(x)]/(sec(x)-1)dx#?

1 Answer
Jan 30, 2018

# int \ (secx \ tanx )/ (secx - 1) \ dx = ln|secx+1| + C#

Explanation:

We seek:

# I =int \ (secx \ tanx )/ (secx - 1) \ dx #

If we perform the substitution:

# u =secx-1 => (du)/dx = secx \ tanx #

Applying this substitution to the integral we get:

# I =int \ 1/u \ du #

Which is a trivial standard integral, so if we integrate we get:

# I = ln|u| + C#

And restoration of the earlier substitution gives:

# I = ln|secx+1| + C#