We use substitution to put the problem into a form where we can use partial fractions.
Let #u = 1+e^x => du = e^xdx#. Then:
#int1/(1+e^x)dx = inte^x/(e^x(1+e^x)dx#
#=int1/(u(u-1)du#
Decomposing #1/(u(u-1))#, we find
#1/(u(u-1)) = 1/(u-1) - 1/u#
#=> int1/(u(u-1))du = int1/(u-1)du - int1/udu#
#=ln|u-1|-ln|u|+C#
#=ln|e^x+1-1|-ln|e^x+1|+C#
#=ln(e^x)-ln(e^x+1)+C#
#=x-ln(e^x+1)+C#
Rather than using partial fractions, we can also solve this with a little algebraic manipulation and substitution.
#int1/(1+e^x)dx = int(1+e^x-e^x)/(1+e^x)dx#
#=int(1+e^x)/(1+e^x)dx - int e^x/(1+e^x)dx#
#=intdx-inte^x/(1+e^x)dx#
#=x-inte^x/(1+e^x)dx#
Focusing on the remaining integral, let #u = (1+e^x) => du = e^xdx#
Substituting, we have
#inte^x/(1+e^x)dx = int1/udu#
#=ln|u|+C#
#=ln(1+e^x)+C#
Plugging this into the equation above, we can get our result:
#int1/(1+e^x)dx = x-ln(1+e^x)+C#