Take the substitution #x=tant# #:. dx=sec^2tdt.# #:. int{1/((1+x^2)^2)}dx =int{1/(1+tan^2t)^2}sec^2tdt=int(1/sec^4t)sec^2tdt=int(cos^4t/cos^2t)dt=intcos^2tdt=int(1+cos2t)/2dt=1/2{t+(sin2t)/2)#
Now #x=tant rArr t=arc tanx.# Further, #sin2t =(2tant)/(1+tan^2t)=(2x)/(1+x^2).#