How do you integrate #(1-(tanx)^2)/(secx)^2#?
1 Answer
Dec 28, 2016
I got
Note the identity:
#1 + tan^2x = sec^2x# ,
so that:
#int (1 - tan^2x)/(sec^2x)dx#
#int (2 - sec^2x)/(sec^2x)dx#
#int 2cos^2x - 1dx#
Now, note another identity:
#cos^2x = (1 + cos2x)/2#
Now this is much simpler to integrate than we started with!
#=> int 2((1 + cos2x)/2) - 1dx#
#= int cos2xdx#
Therefore:
#=> color(blue)(int (1 - tan^2x)/(sec^2x)dx = 1/2sin2x + C)#