How do you integrate #((4-x^2)^(1/2)) / x^2#?
1 Answer
Keeping trigonometric substitution in mind, the numerator is of the form:
#sqrt(a^2 - x^2)#
which resembles
With this substitution, we get:
#= int (cancel(2)costheta)/(cancel(4)sin^2theta) cancel(2)costhetad theta#
#= int cot^2thetad theta#
#= int csc^2theta - 1d theta#
since
The derivative of
#= -int 1-csc^2thetad theta#
#= -(int d theta - intcsc^2thetad theta)#
#= -(int d theta + int-csc^2thetad theta)#
#= -int d theta - int-csc^2thetad theta#
#= -theta - cottheta#
With
So the final answer is:
#= color(blue)(-arcsin(x/2) - sqrt(4-x^2)/x + C)#