How do you integrate #(5x)/(2x^2+11x+12)# using partial fractions?
1 Answer
Explanation:
We start by factoring the denominator.
The partial fraction decomposition will therefore be of the form:
#A/(2x + 3) + B/(x + 4) = (5x)/((2x + 3)(x + 4)#
#A(x + 4) + B(2x + 3) = 5x#
#Ax + 4A + 2Bx+ 3B = 5x#
#(A + 2B)x + (4A + 3B) = 5x#
We now write a systems of equations.
#{(A + 2B= 5), (4A + 3B = 0):}#
Solve:
#A = 5 - 2B#
#4(5 - 2B) + 3B = 0#
#20 - 8B + 3B = 0#
#-5B = -20#
#B = 4#
#A + 2(4) = 5#
#A = -3#
Hence, the partial fraction decomposition is
#int(4/(x + 4) - 3/(2x + 3))dx#
We know that
#int(4/(x + 4) - 3/(2x + 3))dx = 4ln|x + 4| - 3/2ln|2x + 3| + C#
Hopefully this helps!