How do you integrate #8 / [ ( x + 2 ) ( x^2 + 4 ) ] # using partial fractions?

1 Answer
Apr 15, 2017

Please see the explanation.

Explanation:

Decompose: #8/(( x + 2 ) ( x^2 + 4 ))#

#8/(( x + 2 ) ( x^2 + 4 )) = A/(x+2)+ (Bx)/(x^2+4) + C/(x^2+4)#

Multiply both sides by #( x + 2 ) ( x^2 + 4 )#:

#8 = A( x^2 + 4 ) + Bx( x + 2 ) + C(x + 2)#

Let #x = -2#:

#8 = A( (-2)^2 + 4 ) + B(-2)( -2 + 2 ) + C(-2 + 2)#

#8 = A(8) + B(-2)(0) + C(0)#

#A = 1#

#4 - x^2 = Bx( x + 2 ) + C(x + 2)#

Let #x = 0#

#4-0^2 = B(0)( 0 + 2 ) + C(0 + 2)#

#4 = 2C#

#C = 2#

#4 - x^2 = Bx( x + 2 ) + 2x + 4#

#- x^2 -2x= Bx( x + 2 )#

#B = -1#

#int8/(( x + 2 ) ( x^2 + 4 ))dx = int1/(x+2)dx- intx/(x^2+4)dx + int2/(x^2+4)dx#

The first integral is the natural logarithm:

#int8/(( x + 2 ) ( x^2 + 4 ))dx = ln|x+2|- intx/(x^2+4)dx + int2/(x^2+4)dx#

Multiple the second integral by #2/2# and it, too, becomes a natural logarithm but without an absolute value, because the argument can never be negative:

#int8/(( x + 2 ) ( x^2 + 4 ))dx = ln|x+2|- 1/2ln(x^2+4) + int2/(x^2+4)dx#

The last integral is our old friend the inverse tangent:

#int8/(( x + 2 ) ( x^2 + 4 ))dx = ln|x+2|- 1/2ln(x^2+4) + tan^-1(x/2)+C#