We perform the decomposition into partial fractions
#(9x^2+1)/(x^2(x-2)^2)=A/(x^2)+B/(x)+C/(x-2)^2+D/(x-2)#
#=(A(x-2)^2+B(x(x-2)^2)+C(x^2)+D(x^2(x-2)))/(x^2(x-2)^2)#
As the denominators are the same, we compare the numerators
#9x^2+1=A(x-2)^2+B(x(x-2)^2)+C(x^2)+D(x^2(x-2))#
Let #x=0#, #=>#, #1=4A#, #=>#, #A=1/4#
Let #x=2#, #=>#, #37=4C#, #=>#, #C=37/4#
Coefficients of #x^2#
#9=A-4B+C-2D#
Coeficients of #x#,
#0=-4A+4B#, #=>#, #B=A=1/4#
#1/4-1+37/4-2D=9#
#2D=37/4-3/4-9=34/4-9=-2/4=-1/2#
#D=-1/4#
So,
#(9x^2+1)/(x^2(x-2)^2)=(1/4)/(x^2)+(1/4)/(x)+(37/4)/(x-2)^2+(-1/4)/(x-2)#
Therefore,
#int((9x^2+1)dx)/(x^2(x-2)^2)=1/4intdx/(x^2)+1/4intdx/(x)+37/4intdx/(x-2)^2-1/4intdx/(x-2)#
#=-1/(4x)-37/(4(x-2))+1/4ln(|x|)-1/4ln(|x-2|)+C#