How do you integrate # csc^3x#?

1 Answer
Aug 19, 2016

#(-cotxcscx-ln(abs(cotx+cscx)))/2+C#

Explanation:

We have:

#I=intcsc^3xdx#

We will use integration by parts. First, rewrite the integral as:

#I=intcsc^2xcscxdx#

Since integration by parts takes the form #intudv=uv-intvdu#, let:

#{(u=cscx" "=>" "du=-cotxcscxdx),(dv=csc^2xdx" "=>" "v=-cotx):}#

Applying integration by parts:

#I=-cotxcscx-intcot^2xcscxdx#

Through the Pythagorean identity, write #cot^2x# as #csc^2x-1#.

#I=-cotxcscx-int(csc^2x-1)(cscx)dx#

#I=-cotxcscx-intcsc^3xdx+intcscxdx#

Note that #I=intcsc^3xdx# and #intcscxdx=-ln(abs(cotx+cscx))#.

#I=-cotxcscx-I-ln(abs(cotx+cscx))#

Add the original integral #I# to both sides.

#2I=-cotxcscx-ln(abs(cotx+cscx))#

Solve for #I# and add the constant of integration:

#I=(-cotxcscx-ln(abs(cotx+cscx)))/2+C#