How do you integrate # csc^3x#?
1 Answer
Aug 19, 2016
Explanation:
We have:
#I=intcsc^3xdx#
We will use integration by parts. First, rewrite the integral as:
#I=intcsc^2xcscxdx#
Since integration by parts takes the form
#{(u=cscx" "=>" "du=-cotxcscxdx),(dv=csc^2xdx" "=>" "v=-cotx):}#
Applying integration by parts:
#I=-cotxcscx-intcot^2xcscxdx#
Through the Pythagorean identity, write
#I=-cotxcscx-int(csc^2x-1)(cscx)dx#
#I=-cotxcscx-intcsc^3xdx+intcscxdx#
Note that
#I=-cotxcscx-I-ln(abs(cotx+cscx))#
Add the original integral
#2I=-cotxcscx-ln(abs(cotx+cscx))#
Solve for
#I=(-cotxcscx-ln(abs(cotx+cscx)))/2+C#