How do you integrate #cscx #?

1 Answer
Feb 18, 2017

# int \ csc x \ dx = - ln|csc(x) + cot(x)| +C #

Explanation:

There are many ways to prove this result. The quickest method that I am aware of is as follows:

# int \ csc x \ dx = int \ cscx \ (cscx + cotx)/(cscx + cotx) \ dx #
# " "= int \ (csc^2x + cscxcotx)/(cscx + cotx) \ dx #

Then we perform simple substitution, Let

#u = cscx + cotx => (du)/dx = -cscxcotx - csc^2x #
# " "= -(cscxcotx + csc^2x) #

And so:

# int \ csc x \ dx = int \ (-1/u) \ du #
# " "= - int \ 1/u \ du #
# " "= - ln|u| +C #
# " "= - ln|cscx + cotx| +C #