How do you integrate #(e^(sqrt(1+3x)))dx#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Eddie Jun 26, 2016 #= 2/3 *e^sqrt(1+3x) ( sqrt(1+3x) - 1) + C# Explanation: #int \ (e^(sqrt(1+3x))) \ dx# sub #p = sqrt(1+3x), \qquad dp = 3/(2 sqrt(1+3x)) dx = 3/(2p) dx# #\implies 2/3 int \ p e^p \ dp# IBP #u = p, u' = 1# #v' = e^p, v = e^p# #\implies 2/3 ( p e^p - int \ e^p \ dp)# #= 2/3 ( p e^p - e^p ) + C# #= 2/3 *e^p ( p - 1) + C# #= 2/3 *e^sqrt(1+3x) ( sqrt(1+3x) - 1) + C# Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 2576 views around the world You can reuse this answer Creative Commons License