How do you integrate #\int _ { 0} ^ { \frac { \pi } { 4} } 2x \sin x d x#?
1 Answer
Jun 10, 2017
The integral equals approximately
Explanation:
Use integration by parts.
Let
#I = int (u dv) = uv - int(v du)#
#I = int (2xsinx) = -2xcosx - int(-2cosx)dx#
#I = int (2xsinx) = -2xcosx + 2intcosx dx#
#I = int(2xsinx) = 2sinx - 2xcosx + C#
If we make this a definite integral, though, we have:
#I = [2sinx - 2xcosx]_0^(pi/4)#
#I = 2sin(pi/4) - 2(pi/4)cos(pi/4) - (2sin(0) - 2(0)cos(0))#
#I = 2/sqrt(2) - pi/(2sqrt(2))#
#I ~~ 0.30#
Hopefully this helps!