How do you integrate #\int _ { 0} ^ { \frac { \pi } { 4} } 2x \sin x d x#?

1 Answer
Jun 10, 2017

The integral equals approximately #0.30#.

Explanation:

Use integration by parts.

Let #u = 2x# and #dv = sinx#. Then #du = 2dx# and #v = -cosx#

#I = int (u dv) = uv - int(v du)#

#I = int (2xsinx) = -2xcosx - int(-2cosx)dx#

#I = int (2xsinx) = -2xcosx + 2intcosx dx#

#I = int(2xsinx) = 2sinx - 2xcosx + C#

If we make this a definite integral, though, we have:

#I = [2sinx - 2xcosx]_0^(pi/4)#

#I = 2sin(pi/4) - 2(pi/4)cos(pi/4) - (2sin(0) - 2(0)cos(0))#

#I = 2/sqrt(2) - pi/(2sqrt(2))#

#I ~~ 0.30#

Hopefully this helps!