How do you integrate #\int _ { 1} ^ { 16} \frac { t + 1} { \sqrt { t } } d t#?

1 Answer
Jan 25, 2018

#int_1^16(t+1)/sqrttdt=22#

Explanation:

Let #sqrtt=x# and then #x^2=t# .

Hence#1/(2sqrtt)dt=dx# or #(dt)/sqrtt=2dx# and

#int_1^16(t+1)/sqrttdt=int_1^4(x^2+1)dx#

= #[x^3/3+x]_1^4#

= #[4^3/3+4-1^3/3-1]#

= #[64/3+4-1/3-1]#

= #63/3+3#

= #22#