How do you integrate #int (1-2x^2)/((x+1)(x+6)(x-7)) # using partial fractions?
1 Answer
#int (1-2x^2)/((x+1)(x+6)(x-7)) dx#
#= 1/40 ln abs(x+1) -71/65 ln abs(x+6) -97/104 ln abs(x-7) + c#
Explanation:
The denominator has already been factored into distinct linear factors for us, so to construct a partial fraction decomposition we just need to find
#(1-2x^2)/((x+1)(x+6)(x-7)) = A/(x+1) + B/(x+6) + C/(x-7)#
#=(A(x+6)(x-7)+B(x+1)(x-7)+C(x+1)(x+6))/((x+1)(x+6)(x-7))#
#=(A(x^2-x-42)+B(x^2-6x-7)+C(x^2+7x+6))/((x+1)(x+6)(x-7))#
#=((A+B+C)x^2+(-A-6B+7C)x+(-42A-7B+6C))/((x+1)(x+6)(x-7))#
Equating coefficients we get the system of linear equations:
#{ (A+B+C=-2), (-A-6B+7C=0), (-42A-7B+6C=1) :}#
Write this out as a matrix:
#((1, 1, 1, -2), (-1, -6, 7, 0), (-42, -7, 6, 1))#
Perform a sequence of row operations to make the left hand
Add row
#((1, 1, 1, -2), (0, -5, 8, -2), (-42, -7, 6, 1))#
Add
#((1, 1, 1, -2), (0, -5, 8, -2), (0, 35, 48, -83))#
Add
#((1, 1, 1, -2), (0, -5, 8, -2), (0, 0, 104, -97))#
Multiply row
#((1, 1, 1, -2), (0, 1, -8/5, 2/5), (0, 0, 104, -97))#
Subtract row
#((1, 0, 13/5, -12/5), (0, 1, -8/5, 2/5), (0, 0, 104, -97))#
Divide row
#((1, 0, 13/5, -12/5), (0, 1, -8/5, 2/5), (0, 0, 1, -97/104))#
Subtract
#((1, 0, 0, 1/40), (0, 1, -8/5, 2/5), (0, 0, 1, -97/104))#
Add
#((1, 0, 0, 1/40), (0, 1, 0, -71/65), (0, 0, 1, -97/104))#
So:
#{ (A = 1/40), (B=-71/65), (C=-97/104) :}#
Then using
#int (1-2x^2)/((x+1)(x+6)(x-7)) dx#
#=int A/(x+1) + B/(x+6) + C/(x-7) dx#
#=1/40 ln abs(x+1) -71/65 ln abs(x+6) -97/104 ln abs(x-7) + c#