How do you integrate #int 1/(4x^2-9)^(3/2)# by trigonometric substitution?

1 Answer
Nov 26, 2016

#(-x)/(9sqrt(4x^2-9))+C#

Explanation:

#intdx/(4x^2-9)^(3/2)#

Let #2x=3sectheta# such that #2dx=3secthetatanthetad theta#.

#=1/2int(2dx)/((2x)^2-9)^(3/2)#

#=1/2int(3secthetatanthetad theta)/(9sec^2theta-9)^(3/2)#

Factoring #9^(3/2)=27# from the denominator:

#=1/2int(3secthetatantheta)/(27(sec^2theta-1)^(3/2))d theta#

Since #sec^2theta-1=tan^2theta#:

#=1/18int(secthetatantheta)/tan^3thetad theta#

#=1/18intsectheta/tan^2thetad theta#

#=1/18intcostheta/sin^2thetad theta#

Letting #u=sintheta# so #du=costhetad theta#.

#=1/18intu^-2du#

#=-1/(18u)#

#=-1/18csctheta#

#=-1/18sectheta/tantheta#

#=-1/54(3sectheta)/sqrt(sec^2theta-1)#

#=-3/54(3sectheta)/sqrt(9sec^2theta-9)#

Using #3sectheta=2x#:

#=-1/18(2x)/sqrt(4x^2-9)#

#=(-x)/(9sqrt(4x^2-9))+C#