How do you integrate #int 1/sqrt((1-(x^2)/3))dx# using trigonometric substitution?
1 Answer
Sep 7, 2016
Explanation:
We'll use the substitution
#intdx/sqrt(1-x^2/3)=int(sqrt3cos(theta)d theta)/sqrt(1-(3sin^2(theta))/3)=sqrt3int(cos(theta)d theta)/sqrt(1-sin^2(theta))#
Note that
#=sqrt3int(cos(theta)d theta)/cos(theta)=sqrt3intd theta=sqrt3theta+C#
From
#=sqrt3arcsin(x/sqrt3)+C#