How do you integrate #int 1/sqrt(2x-12sqrtx-5) # using trigonometric substitution?

1 Answer
May 2, 2018

#I=sqrt(2x-12sqrtx-5)+3sqrt2ln|sqrt(2x)-3sqrt2+sqrt(2x-12sqrtx- 5)|+C,#
There is no any trig.function in the answer .So it is difficult to proceed with trig substitution.

Explanation:

Here,

#I=int1/sqrt(2x-12sqrtx-5)dx#

Let, #sqrtx=t=>x=t^2=>dx=2tdt#

#I=int(2t)/sqrt(2t^2-12t-5)dt#

#=1/2int(4t-12+12)/sqrt(2t^2-12t-5)dt#

#=color(red)(1/2int(4t-12)/sqrt(2t^2-12t-5)dt)+color(blue) (1/2int12/sqrt(2t^2-12t-5)dt#

#I=color(red)(I_1)+color(blue)(I_2)...to(A)#

Now, #I_1=1/2int(4t-12)/sqrt(2t^2-12t-5)dt#

Take, #sqrt(2t^2-12t-5)=u=>2t^2-12t-5=u^2#

#=>4t-12=2udu#

#:.I_1=1/2int(2u)/udu=intdu=u+c_1,tou=sqrt(2t^2-12t-5)#

#=sqrt(2t^2-12t-5)+c_1,where,sqrtx=t#

#:.I_1=sqrt(2x-12sqrtx-5)+c_1#

#Also, I_2=1/2int12/sqrt(2t^2-12t-5)dt#

#I_2=6/sqrt2int1/sqrt(t^2-6t-5/2)dt#

#=6/sqrt2int1/sqrt(t^2-6t+9-23/2)dtto[-5/2=(18-23)/2]#

#=3sqrt2int1/sqrt((t-3)^2-(sqrt(23/2))^2)dt#

#=3sqrt2ln|t-3+sqrt((t-3)^2-(sqrt(23/2))^2)|+c#

#=3sqrt2ln|t-3+color(violet)(sqrt(t^2-6t-5/2))|+c#

#=3sqrt2ln|t-3+sqrt(2t^2-12t-5)/color(orange)(sqrt2)|+color(orange)(c#

#I_2=3sqrt2ln|sqrt2t-3sqrt2+sqrt(2t^2-12t-5)|+color(orange)(c_2#

Subst .back #t=sqrtx#

#I_2=3sqrt2ln|sqrt(2x)-3sqrt2+sqrt(2x-12sqrtx-5)|+c_2#

Hence, from #(A)#,

#I=sqrt(2x-12sqrtx-5)+3sqrt2ln|sqrt(2x)-3sqrt2+sqrt(2x-12sqrtx- 5)|+C,#

#where,C=c_1+c_2#