Here,
#I=int1/sqrt(4x^2+4x-24)dx#
#=int1/sqrt(4x^2+4x+1-25)dx#
#=int1/sqrt((2x+1)^2-5^2)dx#
Substituting,
#2x+1=5secu=>2dx=5secutanudu#
#=>dx=5/2secutanudu and color(blue)(secu=(2x+1)/5#
So,
#I=int1/sqrt(5^2sec^2u-5^2)xx5/2secutanudu#
#=5/2int (secutanu)/(5tanu)du#
#=1/2intsecudu#
#=1/2ln|secu+tanu|+c#
#=1/2ln|secu+sqrt(sec^2u-1)|+c,where, color(blue)(secu=(2x+1)/5#
#=1/2ln|(2x+1)/5+sqrt((((2x+1)/5))^2-1) |+c#
#=1/2ln|(2x+1)/5+sqrt(4x^2+4x+1-25)/5|+c#
#=1/2ln|((2x+1)+sqrt(4x^2+4x-24))/5|+c#
#=1/2ln|2x+1+sqrt(4x^2+4x-24)|-1/2ln(5)+c#
#=1/2ln|2x+1+sqrt(4x^2+4x-24)|+C# , Put , #C=c-1/2ln(5)#