How do you integrate #int 1/sqrt(4x+8sqrtx+12) # using trigonometric substitution?
1 Answer
Explanation:
We have:
#intdx/sqrt(4x+8sqrtx+12)#
Factor
#=1/2intdx/sqrt(x+2sqrtx+3)#
Complete the square in the denominator. Think about it in terms of
#=1/2intdx/sqrt((sqrtx+1)^2+2)#
Now, let
Rearranging some:
#=int(sqrtxdx)/(2sqrtxsqrt((sqrtx+1)^2+2))#
Now, performing the substitutions. We have
#=int((sqrt2tantheta-1)sqrt2sec^2thetad theta)/sqrt(2tan^2theta+2)#
Factoring
#=int((sqrt2tantheta-1)sqrt2sec^2theta)/(sqrt2sectheta)d theta#
#=int(sqrt2tantheta-1)secthetad theta#
#=sqrt2inttanthetasecthetad theta-intsecthetad theta#
Both of which are common integrals:
#=sqrt2sectheta-ln(abs(sectheta+tantheta))#
Write
#=sqrt2sqrt(tan^2theta+1)-ln(abs(sqrt(tan^2theta+1)+tantheta))#
Using
#=sqrt2sqrt((sqrtx+1)^2/2+1)-ln(abs(sqrt((sqrtx+1)^2/2+1)+(sqrtx+1)/sqrt2))#
#=sqrt2sqrt(((sqrtx+1)^2+2)/2)-ln(abs(sqrt(((sqrtx+1)^2+2)/2)+(sqrtx+1)/sqrt2))#
#=sqrt((sqrtx+1)^2+2)-ln(abs((sqrt((sqrtx+1)^2+2)+sqrtx+1)/sqrt2))#
Note that the
#=sqrt(x+2sqrtx+3)-ln(abs(sqrtx+sqrt(x+2sqrtx+3)+1))+C#