We use #tan^2x+1=sec^2x#
Let #x=4tanu#
#dx=4sec^2udu#
#intdx/sqrt(x^2+16)=int(4sec^2udu)/sqrt(16tan^2u+16)#
#=int(4sec^2udu)/(4secu)#
#=intsecudu#
#=int(secu(tanu+secu)du)/(tanu+secu)#
#=int((secutanu+sec^2u)du)/(tanu+secu)#
Let #secu+tanu=w#
#dw=(secutanu+sec^2u)du#
So,
#int((secutanu+sec^2u)du)/(tanu+secu)#
#=int(dw)/w#
#=ln(w)#
#=ln(secu+tanu)#
#tanu=x/4#
#sec^2u=1+tan^2u=1+x^2/16#
#ln(secu+tanu)=ln(sqrt(16+x^2)/4+x/4)#
#intdx/sqrt(x^2+16)=ln(abs(sqrt(16+x^2)/4+x/4))+C#