How do you integrate #int 1/sqrt(x^2-6) # using trigonometric substitution?

1 Answer
Jan 25, 2016

#int\frac{1}{\sqrt{x^2-6}}=log_e((x+sqrt{x^2-6})/\sqrt6)+c#

Explanation:

Given equation is #int\frac{1}{\sqrt{x^2-6}}#

For this equation, we'll substitute #x=\sqrt{6}sec(t)#
So, #dx=\sqrt{6}sec(t)tan(t)dt#

Substituting these values into the equation, we get
#int\frac{\sqrt{6}sec(t)tan(t)dt}{\sqrt{6sec^2(x)-6}}#
Taking #\sqrt{6}# common from the denominator, we end with
#int\frac{sec(t)tan(t)dt}{\sqrt{sec^2(t)-1}}#

I believe you're well friends with this general trigonometric equation
#tan^2(\theta)+1=sec^2(\theta)#
So subtracting #1# from both sides, we get #tan^2(\theta)=sec^2(\theta)-1#

Therefore, the denominator of the integral becomes
#int\frac{sec(t)tan(t)dt}{tan(t)}#
Cancelling #tan(t)# function, we end with
#intsec(t)dt=log_e(sec(t)+tan(t))+c#

Now, we know that #x=\sqrt{6}sec(t)\impliessec(t)=x/\sqrt{6}#
Also, from the above trigonometric identity, #tan^2(t)=x^2/6-1=(x^2-6)/6\impliestan(t)=\sqrt{\frac{x^2-6}{6}}#

So substituting the above values for their respective functions, we get the integral of the said main function.