How do you integrate #int ( 1/((x+1)^2+4)) # using partial fractions?
1 Answer
Sep 12, 2016
Explanation:
This cannot be expressed using partial fractions. However, we can integrate this using trigonometric substitutions.
#intdx/((x+1)^2+4)#
Let
#=int(2sec^2thetad theta)/(4tan^2theta+4)#
Factoring:
#=1/2int(sec^2thetad theta)/(tan^2theta+1)#
Recall that
#=1/2int(sec^2thetad theta)/sec^2theta#
#=1/2intd theta#
#=1/2theta+C#
From
#=1/2arctan((x+1)/2)+C#