How do you integrate #int 1/(x^2(2x-1))# using partial fractions?

2 Answers
Apr 17, 2018

#2ln|2x-1|-2ln|x|+1/x+C#

Explanation:

We need to find #A,B,C# such that

#1/(x^2(2x-1))=A/x+B/x^2+C/(2x-1)#

for all #x#.

Multiply both sides by #x^2(2x-1)# to get

#1=Ax(2x-1)+B(2x-1)+Cx^2#

#1=2Ax^2-Ax+2Bx-B+Cx^2#

#1=(2A+C)x^2+(2B-A)x-B#

Equating coefficients give us

#{(2A+C=0),(2B-A=0),(-B=1):}#

And thus we have #A=-2,B=-1,C=4#. Substituting this in the initial equation, we get

#1/(x^2(2x-1))=4/(2x-1)-2/x-1/x^2#

Now, integrate it term by term
#int\ 4/(2x-1)\ dx-int\ 2/x\ dx-int\ 1/x^2\ dx#

to get

#2ln|2x-1|-2ln|x|+1/x+C#

Apr 17, 2018

The answer is #=1/x-2ln(|x|)+2ln(|2x-1|)+C#

Explanation:

Perform the decomposition into partial fractions

#1/(x^2(2x-1))=A/x^2+B/x+C/(2x-1)#

#=(A(2x-1)+Bx(2x-1)+C(x^2))/(x^2(2x-1))#

The denominators are the same, compare the numerators

#1=A(2x-1)+Bx(2x-1)+C(x^2)#

Let #x=0#, #=>#, #1=-A#, #=>#, #A=-1#

Let #x=1/2#, #=>#, #1=C/4#, #=>#, #C=4#

Coefficients of #x^2#

#0=2B+C#

#B=-C/2=-4/2=-2#

Therefore,

#1/(x^2(2x-1))=-1/x^2-2/x+4/(2x-1)#

So,

#int(1dx)/(x^2(2x-1))=-int(1dx)/x^2-int(2dx)/x+int(4dx)/(2x-1)#

#=1/x-2ln(|x|)+2ln(|2x-1|)+C#