Rewrite with the rational exponent converted to a root:
#intdx/(sqrt((x^2+4)^3)#
Let #x=2tantheta#
#dx=2sec^2thetad theta#
Rewrite:
#int(2sec^2theta)/(sqrt((4tan^2theta+4)^3))d theta#
#int(2sec^2theta)/(sqrt((4(tan^2theta+1))^3))d theta#
Recall the identity
#tan^2theta+1=sec^2theta#, and apply it:
#int(2sec^2theta)/(sqrt(64(sec^2theta)^3))d theta#
#1/4intsec^2theta/sqrt(sec^6theta)d theta#
#1/4intsec^2theta/sec^3thetad theta#
#1/4intcosthetad theta=1/4sintheta+C#
We want to rewrite in terms of #x.# Recalling that #x=2tantheta, tantheta=x/2.# If #tantheta=x/2, sintheta=x/sqrt(x^2+4)#.
This could be deduced by drawing a right triangle with the sides opposite and adjacent to angle #theta# being labeled #x, 2# (respectively), making the hypotenuse #sqrt(x^2+4)#, and #sintheta=(opposite)/(hypoten use)=x/sqrt(x^2+4)#
So,
#intdx/(x^2+4)^(3/2)=1/4x/sqrt(x^2+4)+C#