How do you integrate #int (13x) / (6x^2 + 5x - 6)# using partial fractions?
1 Answer
Jun 14, 2016
Explanation:
Note that
#6x^2+5x-6=6x^2+9x-4x-6#
#=3x(2x+3)-2(2x+3)#
#=(3x-2)(2x+3)#
The partial fraction decomposition can then be set up as:
#(13x)/((3x-2)(2x+3))=A/(3x-2)+B/(2x+3)#
Multiplying both sides by
#13x=A(2x+3)+B(3x-2)#
Letting
#13(-3/2)=A(2(-3/2)+3)+B(3(-3/2)-2)#
#-39/2=A(-3+3)+B(-9/2-2)#
#-39/2=B(-13/2)#
#3=B#
Letting
#13(2/3)=A(2(2/3)+3)+B(3(2/3)-2)#
#26/3=A(4/3+3)+B(2-2)#
#26/3=A(13/3)#
#2=A#
Thus,
#(13x)/((3x-2)(2x+3))=2/(3x-2)+3/(2x+3)#
So,
#int(13x)/(6x^2+5x-6)dx=2int1/(3x-2)dx+3int1/(2x+3)dx#
#=2/3int3/(3x-2)dx+3/2int2/(2x+3)dx#
#=2/3ln(abs(3x-2))+3/2ln(abs(2x+3))+C#