How do you integrate #int (2x-2)/(x^2 - 6x +10)^(1/2)dx# using partial fractions?

1 Answer
Nov 22, 2015

#[2sqrt(x^2-6x+10)]+[4arcsinh(x-3)]+C#

Explanation:

#int (2x-2)/sqrt(x^2 - 6x +10)dx#

#int (2x-6+4)/sqrt(x^2 - 6x +10)dx#

#int (2x-6)/sqrt(x^2 - 6x +10)dx+4int1/sqrt(x^2-6x+10)dx#

For the first integral let's #u = x^2-6x+10#

#du = 2x-6 dx#

we have #int1/sqrt(u)du#

which is #[2sqrt(u)]#

complete the square for the second

#x^2-6x+10 = x^2-6x+10 + 9 - 9 = (x-3)^2+1#

#[2sqrt(x^2-6x+10)]+4int1/sqrt((x-3)^2+1)dx#

let's #t = x-3 #

#dt = dx#

#[2sqrt(x^2-6x+10)]+4int1/sqrt(t^2+1)dx#

#[2sqrt(x^2-6x+10)]+[4arcsinh(x-3)]+C#