How do you integrate #int 3/((1 + x)(1 - 2x))# using partial fractions?
1 Answer
See below.
Explanation:
The denominator is already factored.
Multiply through by the denominator of the left-hand side:
#(1+x)(1-2x)[3/(cancel((1+x)(1-2x)))=A/cancel(1+x)+B/cancel(1-2x)]# =>
#3=A(1-2x)+B(1+x)#
The next step is to solve for
#x=1/2#
#3=cancel(A*0)+3/2B#
#B=2#
#x=-1#
#3=A(1-(-2))+cancel(B*0)#
#3=3A#
#A=1#
We put these values back into our partial fractions and replace as the integrand.
#int(1)/(1+x)+2/(1-2x)dx#
Technically, you should use a substitution before integrating. Split up the integral.
#int1/(1+x)dx+2int1/(1-2x)dx#
For the first integral,
For the second integral,
#int1/udu-int1/zdz#
Integrate.
#ln(|u|)-ln(|z|)+C#
Substitute back in.
#ln(|1+x|)-ln(|1-2x|)+C# Note: the absolute value signs account for the domain of the natural log function (
#x>0# ).
By the properties of logarithms, you may also write the final answer as:
#ln(|(1+x)/(1-2x)|)+C#