How do you integrate #int 3 xln x^3 dx # using integration by parts?

2 Answers
Apr 17, 2018

#int3xln(x^3)dx=(9x^2lnx)/2-9/4x^2+C#

Explanation:

We're going to want to get rid of the #x^3#. Recalling that #ln(x^a)=alnx, ln(x^3)=3lnx,# and we get

#3(3)intxlnxdx=9intxlnxdx# factoring all constants outside.

Now, we'll make the following selections for Integration by Parts:

#u=lnx#

#du=x^-1dx#

#dv=xdx#

#v=intxdx=1/2x^2#

So, applying the formula, we get

#uv-intvdu=(x^2lnx)/2-1/2intx^-1x^2dx#

#=(x^2lnx)/2-1/2intxdx=(x^2lnx)/2-1/4x^2+C#

Recall that we need to multiply through by the #9# we factored out:

#9[(x^2lnx)/2-1/4x^2+C]=(9x^2lnx)/2-9/4x^2+C#

Thus,

#int3xln(x^3)dx=(9x^2lnx)/2-9/4x^2+C#

Apr 17, 2018

#int 3xlnx^3dx = (9x^2)/4 (2lnx-1)+C#

Explanation:

Using the properties of logarithms:

#ln x^3 = 3lnx #

so:

#int 3xlnx^3dx = 9 int xlnxdx#

integrate now by parts:

#int 3xlnx^3dx = 9 int lnx d(x^2/2)#

#int 3xlnx^3dx = (9x^2lnx)/2 - 9/2 int x^2 d(lnx)#

#int 3xlnx^3dx = (9x^2lnx)/2 - 9/2 int x^2 dx/x#

#int 3xlnx^3dx = (9x^2lnx)/2 - 9/2 int x dx#

#int 3xlnx^3dx = (9x^2lnx)/2 - (9x^2)/4+C#

#int 3xlnx^3dx = (9x^2)/4 (2lnx-1)+C#