How do you integrate #int (3x)/((x + 2)(x - 1))# using partial fractions?
1 Answer
Dec 10, 2016
Explanation:
The partial fraction decomposition of the integrand will be of the form:
# (3x)/((x+2)(x-1)) = A/(x+2) + B/(x-1) #
# " " = (A(x-1) + B(x+2))/((x+2)(x-1))#
# :. 3x" " = A(x-1) + B(x+2) #
Put
Put
Hence,
# (3x)/((x+2)(x-1)) = 2/(x+2) + 1/(x-1) #
And so:
# int(3x)/((x+2)(x-1)) = int(2/(x+2) + 1/(x-1))dx #
# " "= 2int 1/(x+2)dx + int 1/(x-1)dx #
# " "= 2ln|x+2|+ln|x-1| + c #
# " "= ln(|x+2|)^2+ln|x-1| + lnA # (#c=lnA# )
# " "= ln(A(x+2)^2|x-1|) #