How do you integrate #int (4x^2+6x-2)/((x-1)(x+1)^2)# using partial fractions?

1 Answer

#int (4x^2+6x-2)/((x-1)(x+1)^2) dx=#
#2ln(x-1 )+2ln(x+1)-2/(x+1)+C_o#

Explanation:

Set up the equation to solve for the variables A, B,C
#int (4x^2+6x-2)/((x-1)(x+1)^2) dx=int (A/(x-1 )+B/(x+1)+C/(x+1)^2)dx#

Let us solve for A, B, C first

#(4x^2+6x-2)/((x-1)(x+1)^2) =A/(x-1 )+B/(x+1)+C/(x+1)^2#

LCD #=(x-1)(x+1)^2#

#(4x^2+6x-2)/((x-1)(x+1)^2) =(A(x+1)^2+B(x^2-1)+C(x-1))/((x-1)(x+1)^2)#

Simplify

#(4x^2+6x-2)/((x-1)(x+1)^2) =(A(x^2+2x+1)+B(x^2-1)+C(x-1))/((x-1)(x+1)^2)#

#(4x^2+6x-2)/((x-1)(x+1)^2) =(Ax^2+2Ax+A+Bx^2-B+Cx-C)/((x-1)(x+1)^2)#

Rearrange the terms of the right side

#(4x^2+6x-2)/((x-1)(x+1)^2) =(Ax^2+Bx^2+2Ax+Cx+A-B-C)/((x-1)(x+1)^2)#

let us set up the equations to solve for A, B, C by matching the numerical coefficients of left and right terms

#A+B=4" "#first equation
#2A+C=6" "#second equation
#A-B-C=-2" "#third equation

Simultaneous solution using second and third equation results to

#2A+A+C-C-B=6-2#

#3A-B=4" "#fourth equation

Using now the first and the fourth equations

#3A-B=4" "#fourth equation
#3(4-B)-B=4" "#fourth equation

#12-3B-B=4#
#-4B=4-12#
#-4B=-8#
#B=2#

Solve for A using #3A-B=4" "#fourth equation
#3A-2=4" "#fourth equation
#3A=4+2#
#3A=6#
#A=2#

Solve C using the #2A+C=6" "#second equation and #A=2# and #B=2#

#2A+C=6" "#second equation
#2(2)+C=6#
#4+C=6#
#C=6-4#
#C=2#

We now perform our integration
#int (4x^2+6x-2)/((x-1)(x+1)^2) dx=int (2/(x-1 )+2/(x+1)+2/(x+1)^2)dx#

#int (4x^2+6x-2)/((x-1)(x+1)^2) dx=int (2/(x-1 )+2/(x+1)+2*(x+1)^(-2))dx#

#int (4x^2+6x-2)/((x-1)(x+1)^2) dx=2ln(x-1 )+2ln(x+1)+(2*(x+1)^(-2+1))/(-2+1)+C_o#

#int (4x^2+6x-2)/((x-1)(x+1)^2) dx=2ln(x-1 )+2ln(x+1)-2/(x+1)+C_o#

God bless.....I hope the explanation is useful.