How do you integrate #int (4x)/sqrt(x^2-14x+65)dx# using trigonometric substitution?
1 Answer
Mar 8, 2016
Explanation:
The two main tricks are:
- See that:
#x^2-14x+65 = (x-7)^2 +4^2# - Use and abuse:
#sinh^2u + 1 = cosh^2 u#
Using 1. we choose our substitution like this:
#x-7 = 4 sinhu# #dx = 4 cosh u*du#
To get the following:
Which will simplify
We can proceed:
We can then substitute it back in x: