How do you integrate #int cost/sqrt(1+sin^2t)# by trigonometric substitution?
1 Answer
Sep 11, 2016
Explanation:
We have:
#intcost/sqrt(1+sin^2t)dt#
We will use the substitution
Substituting, this yields:
#=int(sec^2thetad theta)/sqrt(1+tan^2theta)#
Since
#=int(sec^2thetad theta)/sectheta=intsecthetad theta#
This is a common integral:
#=lnabs(sectheta+tantheta)#
Since we know
#=lnabs(sqrt(tan^2theta+1)+tantheta)#
#=lnabs(sqrt(sin^2t+1)+sint)+C#