How do you integrate #int dx/(4x^2-1)^(3/2)# using trig substitutions?

1 Answer
Jun 20, 2018

Use the substitution #2x=sectheta#.

Explanation:

Let

#I=intdx/(4x^2-1)^(3/2)#

Apply the substitution #2x=sectheta#:

#I=int(1/2secthetatanthetad theta)/(tan^3theta)#

Simplify:

#I=1/2intcscthetacotthetad theta#

Integrate directly:

#I=-1/2csctheta+C#

Rewrite in terms of #sectheta# and #tantheta#:

#I=-1/2 sectheta/tantheta+C#

Reverse the substitution:

#I=-x/sqrt(4x^2-1)+C#