How do you integrate #int e^(2x)/sqrt(-e^(2x) -25)dx# using trigonometric substitution?

1 Answer
Apr 9, 2018

#color(red)(-sqrt(-e^(2x)-25)+C#

Explanation:

First factor out #i# from the root.

#inte^(2x)/sqrt(-e^(2x)-25)dx#

#inte^(2x)/sqrt(-1(e^(2x)+25))dx#

#inte^(2x)/(sqrt(-1)sqrt(e^(2x)+25))dx#

#1/iinte^(2x)/sqrt(e^(2x)+25)dx#

#-iinte^(2x)/sqrt(e^(2x)+25)dx#

Now we can perform trig substitution.

It's important to recognize:

#e^(2x)=e^x*e^x#

Let

#tantheta=e^x/5#

#e^x=5tantheta#

#e^x*dx=5sec^2theta* d theta#

#sectheta=sqrt(e^(2x)+25)/5#

#5sectheta=sqrt(e^(2x)+25)#

Substituting, we get:

#-iint(5tantheta)/(5sectheta)5sec^2theta *d theta#

#-iint5tanthetasectheta*d theta#

Integrating gives us:

#-i[5sectheta]+C#

#-i[sqrt(e^(2x)+25)]+C#

#color(red)(-sqrt(-e^(2x)-25)+C#