How do you integrate #int e^(sec2x)sec2xtan2xdx# from #[pi/3,pi/2]#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer trosk Apr 21, 2017 #1/2 * (e^(-1) - e^(-2))# Explanation: #d/dx(sec 2x) = d/dx (1/(cos 2x)) = - 1/(cos 2x)^2 * (-sin 2x) * 2# #= sec 2x * tan 2x * 2# Hence #d/dx e^(sec 2x) = e^(sec 2x) * d/dx(sec 2x) = e^(sec 2x) * sec 2x * tan 2x * 2# So #int_(pi/3)^(pi/2) e^(sec2x)sec2xtan2xdx = 1/2 e^(sec 2x)|_(pi/3)^(pi/2) = 1/2 * (e^(-1) - e^(-2))# Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 2778 views around the world You can reuse this answer Creative Commons License