How do you integrate #int (e^x-1)/sqrt(e^(2x) -1)dx# using trigonometric substitution?
1 Answer
Nov 29, 2016
Explanation:
#I=int(e^x-1)/sqrt(e^(2x)-1)dx#
Apply the substitution
#I=int(e^x-1)/(e^xsqrt(e^(2x)-1))(e^xdx)#
#I=int(sectheta-1)/(secthetasqrt(sec^2theta-1))(secthetatanthetad theta)#
Using
#I=int(sectheta-1)d theta#
#I=lnabs(sectheta+tantheta)-theta#
#I=lnabs(sectheta+sqrt(sec^2theta-1))-theta#
Using
#I=lnabs(e^x+sqrt(e^(2x)-1))-sec^-1(e^x)#
Since
#I=ln(e^x+sqrt(e^(2x)-1))-sec^-1(e^x)+C#