How do you integrate #int e^x/sqrt(e^(2x)-4e^x+6)dx# using trigonometric substitution?
1 Answer
Mar 9, 2018
Use the substitution
Explanation:
Let
#I=inte^x/sqrt(e^(2x)-4e^x+6)dx#
Complete the square in the square root:
#I=inte^x/sqrt((e^x-2)^2+2)dx#
Apply the substitution
#I=intsecthetad theta#
Integrate directly:
#I=ln|sectheta+tantheta|+C#
Reverse the substitution:
#I=ln|(e^x-2)+sqrt((e^x-2)^2+2)|+C#