How do you integrate #int e^xe^x# using substitution?
1 Answer
Nov 20, 2016
#inte^xe^xdx#
Method 1 - Immediate Substitution
Make the substitution
#inte^xe^xdx=int(e^x)(e^xdx)=intudu=u^2/2=(e^x)^2/2=e^(2x)/2+C#
Method 2 - Simplification, then Substitution
Use the rule
#inte^xe^xdx=inte^(2x)dx#
Now substitute
#inte^(2x)dx=1/2int(e^(2x))(2dx)=1/2inte^udu#
Since
#1/2inte^udu=1/2e^u=e^u/2=e^(2x)/2+C#