How do you integrate #\int \frac { \sin x \cos x } { \cos ^ { 2} x + 3\cos x + 2} d x#?

1 Answer
Aug 13, 2017

#lnabs(cosx+1)-2lnabs(cosx+2)+C#

Explanation:

#I=int(sinxcosx)/(cos^2x+3cosx+2)dx#

Let #u=cosx# so #du=-sinxdx#. Then, the integral becomes simpler because we can rewrite it entirely without trig functions, noting that the opposite #-du=sinxcosx# will be used:

#I=intcosx/(cos^2x+3cosx+2)(sinxdx)=-intu/(u^2+3u+2)du#

Factor the denominator.

#I=-intu/((u+1)(u+2))du#

Find the partial fraction decomposition for #u/((u+1)(u+2))#:

#u/((u+1)(u+2))=A/(u+1)+B/(u+2)#

#u=A(u+2)+B(u+1)#

Letting #u=-1# shows that:

#-1=A(-1+2)+B(-1+1)" "=>" "A=-1#

Letting #u=-2# shows that:

#-2=A(-2+2)+B(-2+1)" "=>" "B=2#

Thus:

#u/((u+1)(u+2))=(-1)/(u+1)+2/(u+2)#

Then (remember the integral had a #-# sign floating out front):

#I=int1/(u+1)du-int2/(u+2)du#

Which are both simple integrals found through using the natural logarithm:

#I=lnabs(u+1)-2lnabs(u+2)+C#

Reversing the earlier substitution:

#I=lnabs(cosx+1)-2lnabs(cosx+2)+C#