How do you integrate #int sqrt(1-7x^2)# using trig substitutions?

1 Answer
Apr 2, 2017

# int \ sqrt(1-7x^2) \ dx = 1/(2sqrt(7)) arcsin(sqrt(7)x) + 1/2 x sqrt(1-7x^2) +C #

Explanation:

Let:

# I = int \ sqrt(1-7x^2) \ dx #

We would aim to get an expression involving #a^2-x^2# prior to substitution so we can rewrite as:

# I = int \ sqrt(1-(sqrt(7)x)^2) \ dx #

If we compare to the trig identity #1-sin^2theta -= cos^2theta# then it may be worth trying the substitution:

# sin theta = sqrt(7)x => theta = arcsin(sqrt(7)x) #
and, #cos theta (d theta)/dx = sqrt(7) #

Substituting into our integral gives:

# I = int \ sqrt(1-sin^2 theta) \ (cos theta/sqrt(7)) \ d theta #
# \ \ = 1/sqrt(7) \ int \ sqrt(cos^2 theta) cos theta \ d theta #
# \ \ = 1/sqrt(7) \ int \ cos^2 theta \ d theta #

Now we use the identity:

# cos2theta -= cos^2theta - sin^2 theta #
# " " = cos^2theta - (1-cos^2) theta #
# " " = 2cos^2theta - 1#

Which gives us:

# I = 1/sqrt(7) \ int \ cos^2 theta \ d theta #
# \ \ = 1/sqrt(7) \ int \ 1/2(1+cos2theta) \ d theta #
# \ \ = 1/(2sqrt(7)) \ int \ 1+cos2theta \ d theta #
# \ \ = 1/(2sqrt(7)) { theta + 1/2sin2theta } +C #
# \ \ = 1/(2sqrt(7)) theta + 1/(4sqrt(7))sin2theta +C #
# \ \ = 1/(2sqrt(7)) theta + 1/(4sqrt(7))(2sinthetacostheta) +C #

And if we use:

# costheta = sqrt(1-sin^2theta) #

then we can restore the substitution and get:

# I = 1/(2sqrt(7)) theta + 1/2sinthetasqrt(1-sin^2theta) +C #
# \ \ = 1/(2sqrt(7)) arcsin(sqrt(7)x) + 1/(2sqrt(7))(sqrt(7)x)sqrt(1-(sqrt(7)x^2)) +C #
# \ \ = 1/(2sqrt(7)) arcsin(sqrt(7)x) + 1/2 x sqrt(1-7x^2) +C #