How do you integrate #int sqrt(7+5x^2)/x# using trig substitutions?
1 Answer
#I=intsqrt(7+5x^2)/xdx#
We will use the substitution
#I=1/sqrt5intsqrt(7+(sqrt5x)^2)/xsqrt5dx#
Substituting in what we know (recall that
#I=1/sqrt5intsqrt(7+(sqrt7tantheta)^2)/(sqrt7/sqrt5tantheta)sqrt7sec^2thetad theta#
Clearing up the square root, and moving around the constants:
#I=1/sqrt5sqrt5/sqrt7sqrt7intsqrt(7+7tan^2theta)/tanthetasec^2thetad theta#
All the constants outside the integral cancel. We can factor
#I=int(sqrt7sqrt(1+tan^2theta))/tanthetasec^2thetad theta#
Since
#I=sqrt7intsqrt(sec^2theta)/tanthetasec^2thetad theta=sqrt7intsec^3theta/tanthetad theta#
Writing as
#I=sqrt7int1/cos^3thetacostheta/sinthetad theta=sqrt7int1/cos^2theta1/sinthetad theta=sqrt7intsec^2theta/sinthetad theta#
Rewriting (again)!
#I=sqrt7int(tan^2theta+1)/sinthetad theta=sqrt7int(tan^2theta/sintheta+1/sintheta)d theta#
Rearranging...
#I=sqrt7int(sin^2theta/cos^2theta1/sintheta+csctheta)d theta#
#I=sqrt7intsintheta/costheta1/costhetad theta+sqrt7intcscthetad theta#
#I=sqrt7inttanthetasecthetad theta+sqrt7intcscthetad theta#
These are common integrals:
#I=sqrt7sectheta-sqrt7lnabs(csctheta+cottheta)+C#
We started with the substitution
Using our definitions of the trigonometric functions, we see that:
#sectheta="hypotenuse"/"adjacent"=sqrt(7+5x^2)/sqrt7# #csctheta="hypotenuse"/"opposite"=sqrt(7+5x^2)/(sqrt5x)# #cottheta="adjacent"/"opposite"=sqrt7/(sqrt5x)#
Then:
#I=sqrt7sqrt(7+5x^2)/sqrt7-sqrt7lnabs(sqrt(7+5x^2)/(sqrt5x)+sqrt7/(sqrt5x))+C#
#I=sqrt(7+5x^2)-sqrt7lnabs((sqrt(7+5x^2)+sqrt7)/(sqrt5x))+C#
Note that
#I=sqrt(7+5x^2)-sqrt7lnabs((sqrt(7+5x^2)+sqrt7)/x)+C#