First, rewrite the integral:
#color(white)=int t^2(t^3+4)^(-1/2)dt#
#=int t^2/(t^3+4)^(1/2)dt#
#=int t^2/sqrt(t^3+4)dt#
Now, let:
#u=t^3+4quadcolor(blue)=>quaddu=3t^2dtquadcolor(blue)=>quaddt=(du)/(3t^2)#
Substituting:
#=int t^2/sqrt(u)*(du)/(3t^2)#
#=int color(red)cancelcolor(black)(t^2)/sqrt(u)*(du)/(3color(reD)cancelcolor(black)(t^2))#
#=int 1/sqrt(u)*(du)/3#
#=1/3int1/sqrtudu#
#=1/3int1/u^(1/2)du#
#=1/3intu^(-1/2)du#
Power rule:
#=1/3*u^(-1/2+1)/(-1/2+1)#
#=1/3*u^(1/2)/(1/2)#
#=1/3*2*sqrtu#
#=2/3sqrtu#
Put #t^3+4# back in for #u# (and don't forget to add #C#):
#=2/3sqrt(t^3+4)+C#
That's it. Hope this helped!