How do you integrate #int troot3(t-4)dt#?
1 Answer
Jan 29, 2017
Explanation:
#I=inttroot3(t-4)color(white).dt#
Apply the substitution
#I=int(u+4)root3ucolor(white).du#
We can write
#I=int(u+4)u^(1/3)color(white).du#
#I=intu^(4/3)color(white).du+4intu^(1/3)color(white).du#
Integrate both using the rule
#I=u^(7/3)/(7/3)+4(u^(4/3)/(4/3))+C#
#I=3/7u^(7/3)+3u^(4/3)+C#
Since
#I=3/7(t-4)^(7/3)+3(t-4)^(4/3)+C#