How do you integrate #int (x+1)sqrt(2-x)dx#?
1 Answer
Dec 10, 2016
Explanation:
#I=int(x+1)sqrt(2-x)dx#
Let
#I=int(-u+3)sqrtu(-du)=int(u-3)sqrtudu#
Expanding the square root as
#I=int(u(u^(1/2))-3u^(1/2))du=int(u^(3/2)-3u^(1/2))du#
Now using
#I=u^(5/2)/(5/2)-3(u^(3/2)/(3/2))=2/5u^(5/2)-2u^(3/2)#
Factoring and making it look nice:
#I=u^(3/2)(2/5u-2)=(u^(3/2)(2u-10))/5=(2u^(3/2)(u-5))/5#
From
#I=(2(2-x)^(3/2)((2-x)-5))/5=(-2(2-x)^(3/2)(x+3))/5+C#