Let's factorise the denominator
#x^3+x=x(x^2+1)#
So,
#(x-1)/(x^3+x)=(x-1)/(x(x^2+1))#
#=A/x+(Bx+C)/(x^2+1)#
#=(A(x^2+1)+((Bx+C)x))/(x(x^2+1))#
Therefore,
#x-1=A(x^2+1)+x(Bx+C)#
Let #x=0#, #=>#, -1=A#
Coefficients of #x^2#
#0=A+B#, #=>#, #B=1#
Coefficients of #x#
#1=C#
So,
#(x-1)/(x^3+x)=-1/x+(x+1)/(x^2+1)#
Therefore,
#int((x-1)dx)/(x^3+x)=int(-1dx)/x+int((x+1)dx)/(x^2+1)#
#=int(-1dx)/x+int(xdx)/(x^2+1)+int(1dx)/(x^2+1)#
We calculate each integral separately
#-intdx/x=-ln(∣x∣)#
Let #u=x^2+1#, #=>#, #du=2xdx#
#int(xdx)/(x^2+1)=int(2du)/u=1/2lnu#
#=1/2ln(x^2+1)#
Let #x=tantheta#, #=>#, #dx=sec^2theta d theta#
and #x^2+1=tan^2theta + 1=sec^2theta#
So,
#int(1dx)/(x^2+1)=int(sec^2theta d theta)/sec^2theta=intd theta=theta#
#=arctanx#
Putting it alltogether,
#int((x-1)dx)/(x^3+x)=-ln(∣x∣)+1/2ln(x^2+1)+arctanx+C#